Bonding and Structure

1. Phosgene, COC*l*₂, exists as simple molecules.

The displayed formula of a phosgene molecule is shown below.

Draw a '*dot-and-cross*' diagram of a phosgene molecule.
 Show outer electrons only.

ii. Name the shape of a phosgene molecule and explain why it has this shape.

Name of shape 	 	
Explanation	 	
	 	[3]

2(a). Sodium sulfide, Na₂S, is an ionic compound of sodium, Na, and sulfur, S.Draw a '*dot-and-cross*' diagram to show the bonding in sodium sulfide.Show outer electrons only.

[1]

(b). The table below compares the properties of sodium sulfide, sodium and sulfur.

Complete the table.

		Sodium sulfide	Sodium	Sulfur
Melting point / °C		1180	98	113
Type of structure (giant or simple)				
	solid			
Electrical conductivity (good or poor)	liquid			

[3]

- **3.** Solid barium chloride has a high melting point. Barium chloride dissolves in water to form a solution that can be used to test for sulfate ions.
 - i. Draw a '*dot-and-cross*' diagram to show the bonding in solid barium chloride. Show outer electrons only.

[2]

ii. A solution of barium chloride can be made in the laboratory using dilute hydrochloric acid.

Suggest a compound that can be reacted with hydrochloric acid to make barium chloride.

[1]

4. Bromine is a reactive element. It combines with other non-metals to form covalent compounds. Phosphorus tribromide, PBr₃, and iodine monobromide, IBr, are examples of covalent compounds used in organic synthesis.

PBr₃ can be prepared by heating bromine with phosphorus, P₄.

i. Write an equation for this reaction.

_____[1]

ii. How many molecules are present in 1.3535 g of PBr₃?

number of molecules =[3]

iii. The '*dot-and-cross*' diagram of a molecule of PBr₃ is given below.

Name the shape of this molecule and explain why the molecule has this shape.

name:_____

explanation:

5. The hydroxyl group, –OH, is responsible for many properties of alcohols.

Methanol, CH₃OH, is soluble in water because it has polar bonds.

Pauling electronegativity values for carbon, oxygen and hydrogen are shown below.

Element	Electronegativity
Carbon	2.5
Oxygen	3.5
Hydrogen	2.1

Use a labelled diagram to explain why methanol is soluble in water.

- Use displayed formulae showing one molecule of methanol and one molecule of water.
- Add partial charges δ + and δ to show the **two** most polar bonds in a methanol molecule and the polar bonds in a water molecule.
- Show all lone pairs.
- Label the most important intermolecular bond between the molecules.

6. The displayed formula for propanoic acid is shown below.

i. State the shape and bond angle around a carbon atom in the alkyl group of propanoic acid. Explain the shape.

Shape	 	 	 	
Bond angle				
Explanation				
 	 	 	 	[2]

	ii. Suggest a value for the C–O–H bond angle in propanoic acid.	
		[1]
7.	Barium combines with oxygen, chlorine and nitrogen to form ionic compounds.	
	Barium oxide, BaO, has a giant ionic lattice structure.	
	i. State what is meant by the term <i>ionic bond</i> .	
		[1]
	ii. Draw a ' <i>dot-and-cross</i> ' diagram to show the bonding in barium oxide.	
	Show outer electrons only	

iii. Calculate the number of barium ions in 1.50 g of barium oxide.Give your answer in standard form and to three significant figures.

number of barium ions =

8(a). At room temperature and pressure, the first four members of the alkanes are all gases but the first four alcohols are all liquids.

Explain this difference in terms of intermolecular forces.

(b). The boiling points of 2-methylpropan-1-ol and butan-1-ol are shown below.

Alcohol	Boiling point / °C
2-methylpropan-1-ol	108
butan-1-ol	117

Explain why the boiling points are different.

_____[2]

- 9. Nickel(II) nitrate, Ni(NO₃)₂, can be prepared by reacting nickel(II) oxide with dilute nitric acid.
 - i. Write the equation for this reaction.

ii. Ni(NO₃)₂ contains the NO₃⁻ ion. The nitrogen atom bonds to the oxygen atoms with a single covalent bond, a double covalent bond and a dative covalent bond, as shown below.

Draw the '*dot-and-cross*' diagramfor the NO_3^- ion, showing outer shell electrons only. Use a different symbol for the extra electron.

1	-	^	
	4	2	

- **10.** Compounds of calcium have many uses.
 - i. Identify a compound of calcium that could be used to convert a soil pH from 5.8 to 7.5.
 - ii. Calcium phosphide, Ca₃P₂, is an ionic compound used in rat poison.

Calcium phosphide can be prepared by reacting calcium metal with phosphorus, P4.

_____[1]

Write the equation for the reaction of calcium with phosphorus to form calcium phosphide.

.....[1]

iii. Draw a '*dot-and-cross*' diagram to show the bonding in calcium phosphide, Ca₃P₂.Show **outer** electrons only.

[2]

11.i.Fluorine is the most electronegative element.
Indicate any dipoles on the molecule of F2O below using partial charges.

ii. Suggest the **shape** of the F₂O molecule and the F-O-F **bond angle**.

[1]

	Shape		
	Bond a	ingle	
			[1]
	iii. What is	s the oxidation number of oxygen in F_2O ?	
	Include	e the sign in your answer.	
			[1]
40	This supption is		
12.	This question is	about halogens.	
	Solid chlorine a	nd solid bromine have a similar structure.	
	Name this struc	ture.	
			[1]

Draw a 'dot-and-cross' diagram to show the bonding in a nitrogen molecule.
 Show outer electrons only.

[1]

14 This question is about the properties and reactions of butan-2-ol.

Some properties of butan-2-ol are listed in the table.

Melting point	−115 °C
Boiling point	99.5 °C

The shape around the oxygen atom in butan-2-ol is non-linear.

Predict the C–O–H bond angle and explain this shape.

bond angle	
explanation	
	[4]

15. The graph shows the melting points of the elements in Period 3 of the periodic table. 1800

Phosphorus and chlorine have simple molecular structures. More information about phosphorus and chlorine is given in the table below.

Element	Molecular formula
phosphorus	P ₄
chlorine	Cı2

Explain the differences in the melting points of phosphorus and chlorine.

 [3]

16. The table shows the boiling points of ammonia, fluorine and bromine.

	Boiling point / °C
ammonia, NH₃	– 33
fluorine, F ₂	- 188
bromine, Br ₂	59

Explain the different boiling points of NH_3 , F_2 and Br_2 .

Include the names of any relevant forces and particles.

In your answer you should use appropriate technical terms, spelled correctly.

[5]

- 17. Chlorine gas reacts with methane. One of the products is dichloromethane, CH₂Cl₂.
 - i. Chlorine is more electronegative than carbon and hydrogen, which have approximately equal electronegativity values.

Explain what is meant by the term *electronegativity*.

.....[2]

ii. Draw a 3-D diagram of a molecule of CH_2CI_2 .

Use partial charges to indicate polar bonds.

[2] iii. Explain why a CH₂C/₂ molecule is polar.

18(a). Solid aluminium fluoride has a giant ionic lattice structure.

i. Describe what is meant by the term *ionic lattice*, in terms of the type and arrangement of particles present.

 	[2]

ii. Draw a '*dot-and-cross*' diagram for aluminium fluoride.

Show outer electrons only.

(b).	Solid boron tribromide has a simple molecular lattice structure. The atoms are held together by
	covalent bonds.

i. What is meant by the term covalent bond?

ii. Draw a '*dot-and-cross*' diagram to show the bonding in a boron tribromide molecule. Show outer electrons only.

[1]

19 A chemist carries out reactions of barium and barium nitride, Ba_3N_2 .

Reactio Reactio Reactio	on 1 B on 2 B on 3 B	arium is reacted with water. arium nitride is reacted with water, forming an alkaline solution and an alkaline gas. arium is reacted with an excess of oxygen at 500°C, forming barium peroxide, BaO ₂ .
i.	Write equat	tions for Reaction 1 and Reaction 2 .
	Ignore state	e symbols.
	Reaction 1:	
	Reaction 2:	

[2]

			Ŀ
ii.	Predict t	he structure and bonding of Ba₃N₂.	
ii.	BaO ₂ for The perc	rmed in Reaction 3 contains barium and peroxide ions. oxide ion has the structure [O-O] ²⁻ .	
	Suggest	t a ' <i>dot-and-cross</i> ' diagram for BaO ₂ .	
	Show ou	uter shell electrons only.	
			F.
			Ľ
20(a).	Oxides	s can have different types of bonding.	
20(a).	Oxides H ₂ O ha	s can have different types of bonding. as hydrogen bonding.	
20(a).	Oxides H ₂ O ha i.	s can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molec shown and one other H ₂ O molecule.	ule
20(a).	Oxides H ₂ O ha i.	s can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molec shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs.	ule
20(a).	Oxides H ₂ O ha i.	s can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molec shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond.	ule
20(a).	Oxides H₂O ha i.	e can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molec shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond.	ule
20(a).	Oxides H ₂ O ha i.	a can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molecule shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond.	ule
20(a).	Oxides H ₂ O ha i.	es can have different types of bonding. The as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molecule shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond.	ule
20(a).	Oxides H ₂ O ha i.	es can have different types of bonding. As hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molecule shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond.	ule
20(a).	Oxides H ₂ O ha i.	a can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molecule shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond. $\qquad \qquad $	ule
20(a).	Oxides H₂O ha i.	as can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molecules shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond.	ule
20(a).	Oxides H ₂ O ha i.	e can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H ₂ O molec shown and one other H ₂ O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond.	ule
20(a).	Oxides H ₂ O ha i.	 a can have different types of bonding. as hydrogen bonding. Complete the diagram below to show hydrogen bonding between the H₂O molecule. Include relevant dipoles and lone pairs. Label the hydrogen bond. 	ule [

i.	<pre>** ** Sb * Cl * ** ** * Cl * ** ** ** ** ** ** ** ** ** ** ** ** *</pre>
i.	<pre>** ** Sb * Cl * * ** * Cl * * ** * Cl * ** * * * * * * * * * * * * * * * * *</pre>
i.	 ** ** ** ** ** Cl * ** ** ** Cl * ** **
i.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
i.	$\begin{array}{cccc} & & & & & & & \\ & & & & & \\ & & & & & $
i.	$\begin{array}{cccc} & & & & & & & \\ & & & & & \\ & & & & & $
i.	Predict the shape of a molecule of SbC/3.
	$ \begin{array}{c} \bullet \times & \times \times \\ \bullet & Sb & \star & Cl & \star \\ \star & \bullet & \times \times \\ \times & \bullet & \times \times \\ \times & Cl & \star \\ \times & \times & \\ \times & \times & \end{array} $
	$ \begin{array}{c} \bullet \times & \times \times \\ \bullet & Sb & \bullet & Cl & \times \\ \star & \bullet & \times \times \\ \times & \bullet & \times \times \\ \times & Cl & \times \\ \times & \star & \star \end{array} $
	• × × × • Sb $\stackrel{\bullet}{\times}$ Cl $\stackrel{\times}{\times}$ × • × ×
	• X XX
	× Cl ×
	××
A 'dot-ai	and-cross' diagram of SbC/ ₃ is shown below.
Antimon	ny chloride, SbC/₃, exists as simple covalent molecules.
	[1]
	[4]
	Show outer electrons only.
(b).	Draw a ' <i>dot-and-cross</i> ' diagram to show the bonding in CO ₂ .
	[4]

[4]

ii. Polonium, Po, is at the bottom of Group 16. Its hydride has the formula H_2Po . Estimate from the graph the boiling point of H_2Po . The relative molecular mass of H_2Po is 211.

.....[1]

(b). The compounds SO₂ and MgO both contain oxygen.

The table below shows the melting point of both compounds:

Compound	Melting point / K
SO ₂	200
MgO	3125

Predict the type of structure and bonding of SO_2 and MgO and explain the difference in their melting points.

[4]

23. Carbon monoxide contains a triple bond, and includes a dative covalent bond.

Construct a '*dot-and-cross*' diagram to show the outer electron pairs in a molecule of carbon monoxide.